Nature and Causes of Urban Traffic Congestion –

A Data Analytic Approach

Andy Chow

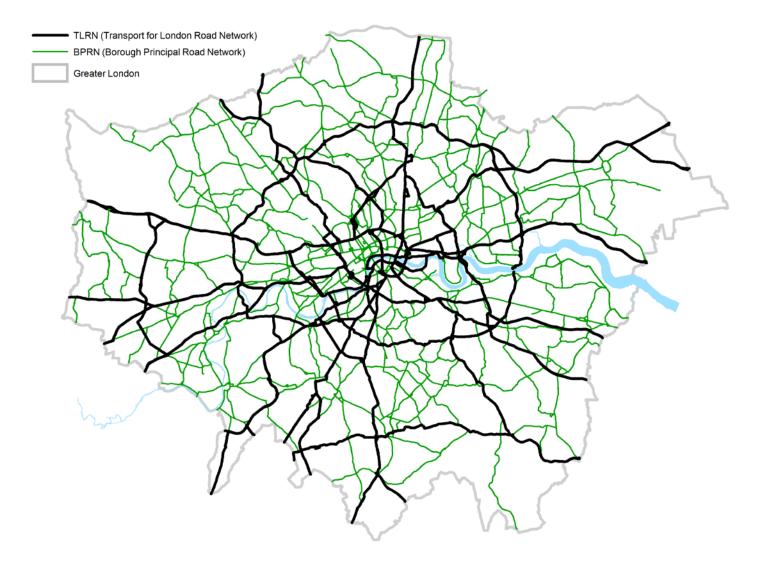
Systems Engineering and Engineering Management City University of Hong Kong

Data analytics

- Knowledge of urban traffic characteristics is prerequisite for effective congestion management
- Most research on traffic analysis has been focusing on motorways / freeways
 - lack of required urban traffic data
 - complexity of the urban network
- Increased availability of urban traffic data (e.g. loop detectors, GPS, vehicle identification, etc) provides new research opportunities

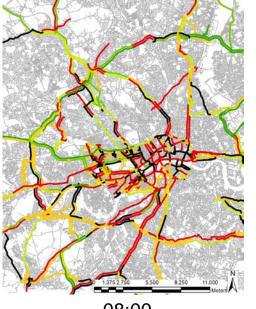
Data analytics

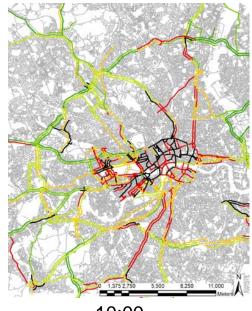
- Fixed sensors (e.g. loop detectors, traffic counters)
- GPS devices (e.g. iBus, Addison Lee Taxi data)
- Automatic Vehicle Identification (e.g. ANPR)



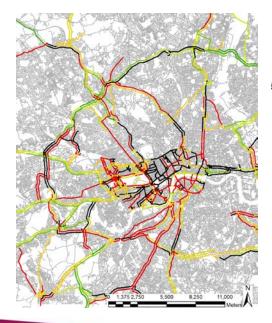
London Congestion Analysis Project (LCAP)

- A total of 500 cameras in London for enforcing different schemes
- Number plates recorded, with associated time stamps
- Derive the vehicle travel times by matching number plates by using Automatic Number Plate Recognition (ANPR) technique

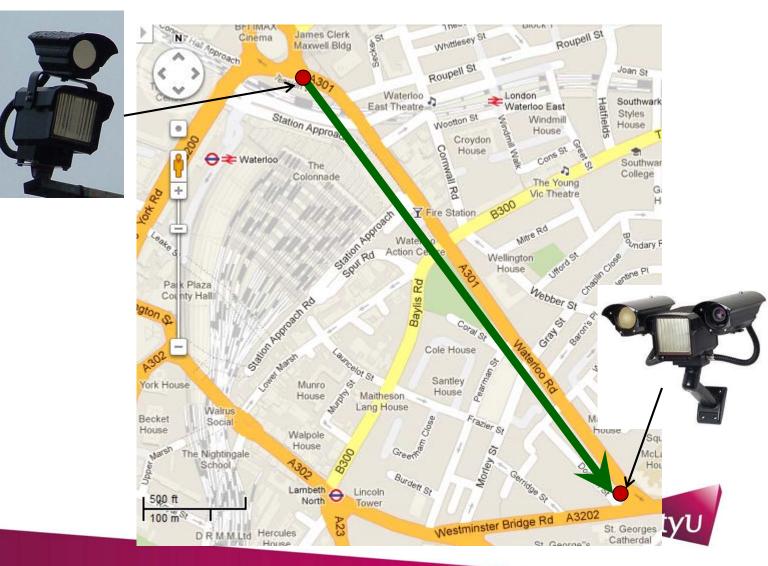


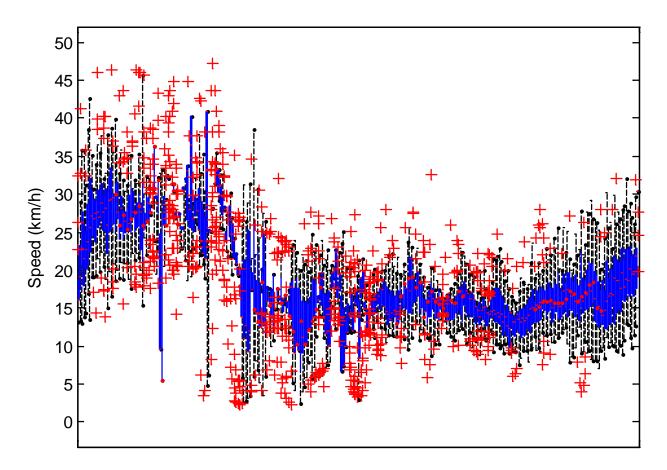


London Road Network

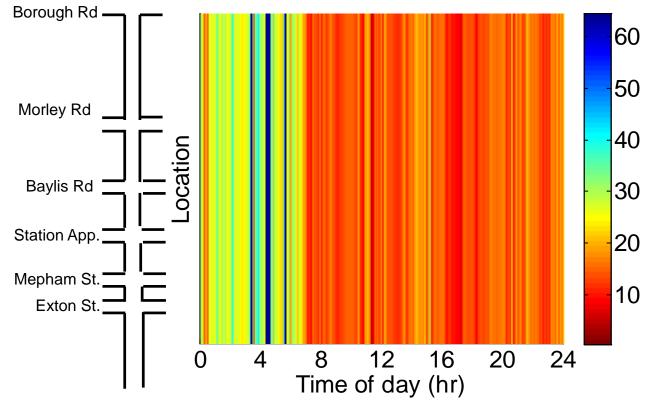


10:00


5 minute aggregated interval travel Time (mins/km)


0.324000 - 1.220000
1.220001 - 1.711000
1.711001 - 2.335000
2.335001 - 3.133000

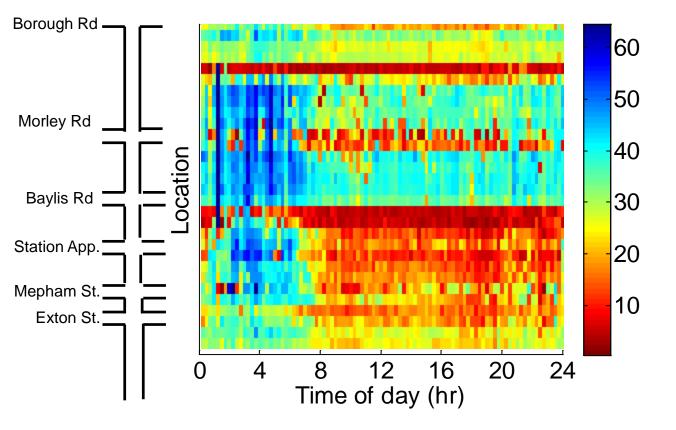
Waterloo Rd (Southbound), Central London



Time of day (hr)

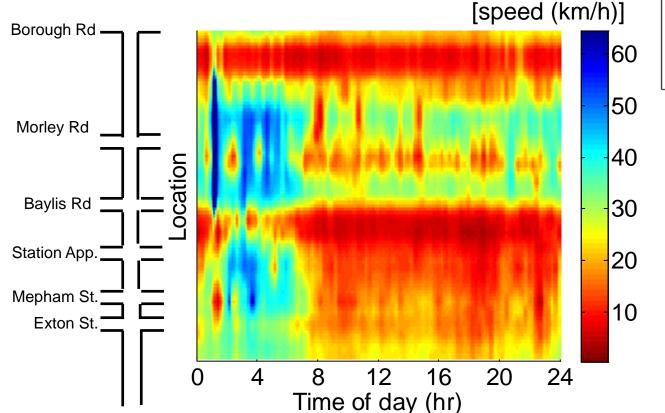
ANPR data

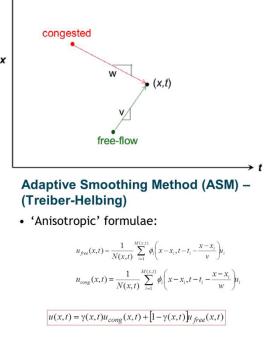
- (derived from journey times over a day)



[speed (km/h)]

GPS probe data (trafficmaster, Addison Lee)


- (collected over a month period...)



[speed (km/h)]

Data fusion (state reconstruction) (ANPR + GPS)

Data integration

• The smoothed data can then be integrated as

$$\widetilde{u}(x,t) = \frac{1}{\mathrm{E}(x,t)} \sum_{k=1}^{K(x,t)} \varepsilon_k(x,t) u_k(x,t)$$

• Weighting of data depends on various factors: sample size, data variance, and quality of the source data (e.g. level of imputation)

Reference:

Chow, A.H.F., et al. (2013) Analysis of adaptive data fusion algorithm for urban network application. Proceedings of the 92nd Annual meeting of the Transportation Research Board (Paper #: 13-4189), January 13-17. Washington, DC, USA.

Analysis – causes of congestion

- To investigate the nature and causes of urban congestion with different sources of data
- Performance measures
 - Journey time (measured from ANPR)
- Level of demand
 - Oyster counts
- Non-recurrent factors
 - Incident and weather records.

Spatio-Temporal Analysis of Network Data and Route Dynamics

Non-recurrent factors (LSTCC)

- The London Streets Traffic Control Centre (LSTCC) records the following incidents:
 - Serious Accidents (Event-Hrs)
 - Moderate Accidents: (Event-Hrs)
 - Breakdowns: (Event-Hrs)
 - Obstruction: (Event-Hrs) due to obstructions other than broken down vehicles. E.g. fallen tree(s) or signal failures;
 - Police checks: (Event-Hrs)
 - Special events: (Event-Hrs) such as filming, car race, carnival, demonstrations, football matches, etc;
 - Roadwork (Event-Hrs)

Regression analysis

 Congestion – represented by sum of journey times in Central London on each day d:

 $Y_{total}(d)$

 Expressed as a function of a list of explanatory variables on each day d

$$Y_{total}(d) = \beta_0 + \sum_i \beta_i X_i(d) + \varepsilon(d)$$

 $\begin{array}{l} X_{oyster}(d) \\ X_{acc_mod}(d) \\ X_{acc_sns}(d) \\ X_{brk}(d) \\ X_{obs}(d) \\ X_{roadwork}(d) \\ X_{event}(d) \\ X_{police}(d) \\ X_{rain}(d) \\ X_{strike}(d) \\ X_{snow}(d) \end{array}$

Total number of bus oyster counts recorded on day d
Total duration (Event-Hrs) of moderate accidents on day d
Total duration (Event-Hrs) of serious accidents on day d
Total duration (Event-Hrs) affected by vehicular breakdowns on day d
Total duration (Event-Hrs) affected by road obstruction on day d
d) Total duration (Event-Hrs) of road work on day d
Total duration (Event-Hrs) of special events on day d
Total duration (Event-Hrs) of police security checks on day d
Total duration (Event-Hrs) of police security checks on day d
Total precipitation (mm) measured on day d
An 0-1 indicator which equals 1 if tube strike on day d; 0 otherwise
An 0-1 indicator which equals 1 if snow on day d; 0 otherwise

Regression analysis

• Congestion – represented by sum of journey times in *Central London* on each day *d*:

$$Y_{total}(d)$$

 Expressed as a function of a list of explanatory variables on each day d

$$Y_{total}(d) = \beta_0 + \sum_i \beta_i X_i(d) + \varepsilon(d)$$

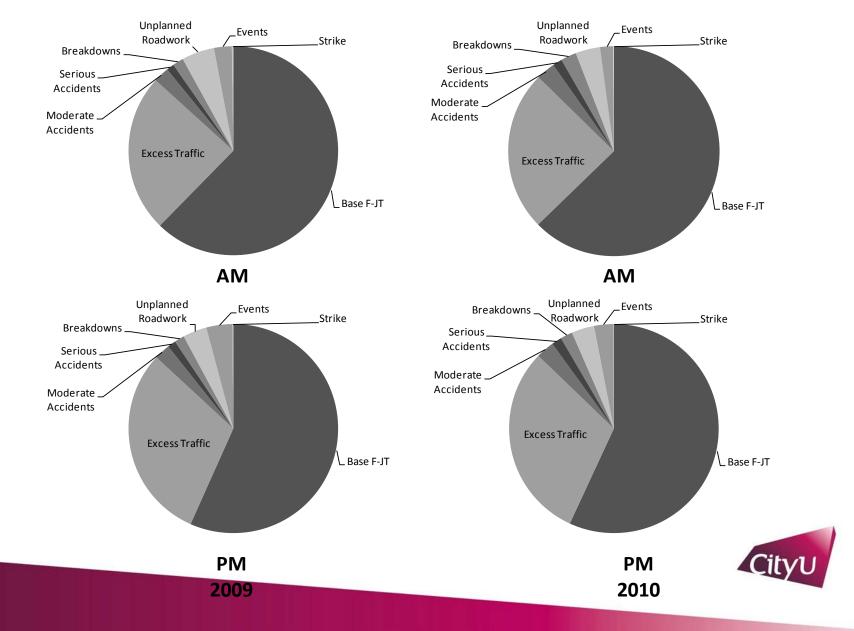
- The parameters β_i reflect the sensitivity and significance of each factor on 'congestion'

	_			(R^2
Scenario	Factors	Coeff. (β)	Std. Error		<i>p</i> -value		
	(Intercept)	211343.4	6338.1	33.345	0.000		0.61
	Bus Oyster counts	0.0628	0.0020	31.528	0.000	-	
	Moderate Accidents	3102.3	695.2	4.463	0.000	***	
	Serious Accidents	6558.2	1313.8	4.992	0.000	***	
	Vehicular breakdowns	4402.3	967.7	4.549	0.000	***	
	Obstruction	149.2	317.0	0.471	0.633		
	Roadwork	161.4	74.2	2.176	0.003	**	
	Special events	499.8	165.6	3.017	0.001	***	
	Police checks	-955.2	1381.8	-0.691	0.492		
	Strike	99972.6	23429.8	4.267	0.000	***	
	Snow	-11232.4	8126.5	-1.382	0.169		
	Precipitation	1502.3	5142.9	0.292	0.789		
PM	(Intercept)	227837.3	8124.9	28.042	0.000	***	0.62
	Bus Oyster counts	0.0759	0.0026	29.216	0.000	***	
	Moderate Accidents	2742.4	695.7	3.942	0.000	**	
	Serious Accidents	6050.1	1015.2	5.960	0.000	**	
	Vehicular breakdowns	3393.9	1085.4	3.127	0.000	***	
	Obstruction	161.8	329.9	0.490	0.629		
	Roadwork	132.0	56.5	2.339	0.018	*	
	Special events	848.0	147.0	5.770			
	Police checks	1255.5	1162.1	1.080	0.338		
	Strike	67268.1	18276.4	3.681	0.002	**	
	Snow	-17042.3	6884.7	-2.475	0.032		
	Precipitation	-112.1	1705.2	-0.066	0.945		

Regression analysis

 Expressed as a function of a list of explanatory variables on each day d

$$Y_{total}(d) = \beta_0 + \sum_i \beta_i X_i(d) + \varepsilon(d)$$


• Hence

$$\overline{Y}_{total} = \beta_0 + \sum_i \beta_i \overline{X}_i$$

gives the estimated components of congestion due to different factors

Components of congestion

Concluding remarks

- The regression analysis identifies the significant factors that will have an impact on the journey times (congestion)
- It is found that 25%-30% of the observed congestion is due to travel demand, while 15% of the observed journey times is due to the non-recurrent factors (e.g. accidents, roadwork, special events, strikes)
- This provides insights on how we should make investment on the transport infrastructure.

